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A variational theory is developed to study electrolyte solutions, composed of interacting pointlike ions in a
solvent, in the presence of dielectric discontinuities and charges at the boundaries. Three important and
nonlinear electrostatic effects induced by these interfaces are taken into account: surface charge induced
electrostatic field, solvation energies due to the ionic cloud, and image-charge repulsion. Our variational
equations thus go beyond the mean-field theory, or weak coupling limit, where thermal fluctuations overcome
electrostatic correlations, and allows one to reach the opposite strong coupling limit, where electrostatic
interactions induced by interfaces dominate. The influence of salt concentration, ion valency, dielectric jumps,
and surface charge is studied in two geometries. �i� A single neutral dielectric interface �e.g., air-water or
electrolyte-membrane� with an asymmetric electrolyte. A charge separation and thus an electrostatic field get
established due to the different image-charge repulsions for coions and counterions. Both charge distributions
and surface tension are computed and compared to previous approximate calculations. For symmetric electro-
lyte solutions close to a charged surface, two zones are characterized. In the first one, in contact with the
surface and with size proportional to the logarithm of the coupling parameter, strong image forces and strong
coupling impose a total ion exclusion, while in the second zone the mean-field approach applies. �ii� A
symmetric electrolyte confined between two dielectric interfaces as a simple model of ion rejection from
nanopores in membranes. The competition between image-charge repulsion and attraction of counterions by
the membrane charge is studied. For small surface charge, the counterion partition coefficient decreases with
increasing pore size up to a critical pore size, contrary to neutral membranes. For larger pore sizes, the whole
system behaves like a neutral pore. For strong coupling and small pore size, coion exclusion is total and the
counterion partition coefficient is solely determined by global electroneutrality. A quantitative comparison is
made with a previous approach, where image and surface charge effects were smeared out in the pore. It is
shown that the variational method allows one to go beyond the constant Donnan potential approximation, with
deviations stronger at high ion concentrations or small pore sizes. The prediction of the variational method is
also compared with MC simulations and good agreement is observed.
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I. INTRODUCTION

The first experimental evidence for the enhancement of
the surface tension of inorganic salt solutions compared to
that of pure water was obtained more than eight decades ago
�1,2�. Wagner proposed the correct physical picture �3� by
relating this effect to image forces that originate from the
dielectric discontinuity and act on ions close to the water-air
interface. He also correctly pointed out the fundamental im-
portance of the ionic screening of image forces and formu-
lated a theoretical description of the problem by establishing
a differential equation for the electrostatic potential and solv-
ing it numerically to compute the surface tension. Using se-
ries expansions, Onsager and Samaras found the celebrated
limiting law �4� that relates the surface tension of symmetric
electrolytes to the bulk electrolyte density at low salt concen-
tration. However, it is known that the consideration of charge
asymmetry leads to a technical complication. Indeed, image-
charge repulsion, whose amplitude is proportional to the
square of ion valency, leads to a split of concentration pro-

files for ions of different charge, which in turn causes a local
violation of the electroneutrality and induces an electrostatic
field close to a neutral dielectric interface. Bravina derived
five decades ago a Poisson-Boltzmann type of equation for
this field �5� and used several approximations in order to
derive integral expressions for the charge distribution and the
surface tension.

These image-charge forces play also a key role in slitlike
nanopores which are model systems for studying ion rejec-
tion and nanofiltration by porous membranes �see the review
�6� and references therein, and �7� for a review of nanoflu-
idics�. Several results have been found in this geometry and
also for cylindrical nanopores beyond the mean-field ap-
proach �using the Debye closure and the Bogoliubov-Born-
Green-Kirkwood-Yvon �BBGKY� hierarchical equations�
and averaging all dielectric and charge effects over the pore
cross section. Within these two approximations, the salt re-
flection coefficient has been studied as a function of the pore
size, the bulk salt concentration and the pore surface charge.

More precisely, the strength of electrostatic correlations of
ions in the presence of charged interfaces without dielectric
discontinuity is quantified by one unique coupling parameter

� = 2�q3�B
2�s, �1�

where q is the ion valency, and �s the fixed surface charge
�8–10�. The Bjerrum length in water for monovalent ions,
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�B=e2 / �4��wkBT��0.7 nm ��w is the dielectric permittivity
of water� is defined as the distance at which the electrostatic
interaction between two elementary charges is equal to the
thermal energy kBT. The second characteristic length is the
Gouy-Chapman length �G=1 / �2�q�B�s� defined as the dis-
tance at which the electrostatic interaction between a single
ion and a charged interface is equal to kBT. The coupling
parameter can be re-expressed in terms of these two lengths
as �=q2�B /�G. On the one hand, the limit �→0, called the
weak coupling �WC� limit, is where the physics of the Cou-
lomb system is governed by the mean-field or Poisson-
Boltzmann �PB� theory, and thermal fluctuations overcome
electrostatic interactions. It describes systems characterized
by a high temperature, low ion valency or weak surface
charge. On the other hand, �→� is the strong coupling �SC�
limit, corresponding to low temperature, high valency of mo-
bile ions or strong surface charge. In this limit, ion-charged
surface interactions control the ion distribution perpendicu-
larly to the interface. For single interface and slab geom-
etries, several perturbative approaches going beyond the WC
limit �11,12� or below the SC limit �8,13,14� have been de-
veloped. Although these calculations were able to capture
important phenomena such as charge renormalization �15�,
ion specific effects at the water-air interface �16,17�, Man-
ning condensation �18�, effect of multipoles �19�, or attrac-
tion between similarly charged objects, they also showed
slow convergence properties, which indicates the inability of
high-order expansions to explore the intermediate regime,
��1. This is quite frustrating since the common experimen-
tal situation usually corresponds to the range 0.1���10
where neither WC nor SC theory is totally adequate.

Consequently, a nonperturbative approach valid for the
whole range of � is needed. A first important attempt in this
direction has been made by Netz and Orland �20� who de-
rived variational equations within the primitive model for
pointlike ions and solved them at the mean-field level in
order to illustrate the charge renormalization effect. Interest-
ingly, these differential equations are equivalent to the clo-
sure equations established in the context of electrolytes in
nanopores �6�. They are too complicated to be solved ana-
lytically or even numerically for general �. A few years
later, Curtis and Lue �21� and Hatlo et al. �22� investigated
the partition of symmetric electrolytes at neutral dielectric
surfaces using a similar variational approach �see also the
review �23��. They have also recently proposed a new varia-
tional scheme based on a hybrid low fugacity and mean-field
expansion �24�, and showed that their approach agrees well
with Monte Carlo simulation results for the counterions-only
case. However, this method is quite difficult to handle, and
one has to solve two coupled variational equations, i.e., a
sixth-order differential equation for the external potential to-
gether with a second algebraic equation. Within this ap-
proach, these authors generalized the study of ion-ion corre-
lations for counterions close to a charged dielectric interface,
first done by Netz in the WC and SC limits �25�, to interme-
diate values of �. They also studied an electrolyte between
two charged surfaces without dielectric discontinuities at the
pore boundary, in two cases: counterions only and added salt,
handled at the mean-field level �26�. Although this simplifi-
cation allows one to focus exclusively on ion-ion correla-

tions induced by the surface charge, the dielectric disconti-
nuity cannot be discarded in synthetic or biological
membranes. Indeed, it is known that image forces play a
crucial role in ion filtration mechanisms �6�. The main goal
of this work is to propose a variational analysis which is
simple enough to intuitively illustrate ionic exclusion in slit
pores, by focusing on the competition between image-charge
repulsion and surface charge interaction. Moreover, our ap-
proach allows us to connect nanofiltration studies �27–29�
with field-theoretic approaches of confined electrolyte solu-
tions within a generalized Onsager-Samaras approximation
�4� characterized by a uniform variational screening length.
This variational parameter takes into account the interaction
with both image charge and surface charge. We also compare
the prediction of the variational theory with Monte Carlo
simulations �30� and show that the agreement is good.

The paper is organized as follows. The variational formal-
ism for Coulombic systems in the presence of dielectric dis-
continuities is introduced in Sec. II. Section III deals with a
single interface. We show that the introduction of simple
variational potentials allows one to fully account for the
physics of asymmetric electrolytes at dielectric interfaces
�e.g., water-air, liquid-liquid, and liquid-solid interfaces, see
Ref. �31��, first studied by Bravina �5� using several approxi-
mations, as well as the case of charged surfaces. In Sec. IV,
the variational approach is applied to a symmetric electrolyte
confined between two dielectric surfaces in order to investi-
gate the problem of ion rejection from membrane nanopores.
Using restricted variational potentials, we show that due to
the interplay between image-charge repulsion and direct
electrostatic interaction with the charged surface, the ionic
partition coefficient has a nonmonotonic behavior as a func-
tion of pore size.

II. VARIATIONAL CALCULATION

In this section, the field theoretic variational approach for
many body systems composed of pointlike ions in the pres-
ence of dielectric interfaces is presented. Since the field theo-
retic formalism as well as the first-order variational scheme
have already been introduced in previous works �20,21�, we
only illustrate the general lines.

The grand-canonical partition function of p ion species in
a liquid of spatially varying dielectric constant ��r� is

Z = �
i=1

p

�
Ni=0

�
eNi	i

Ni!
t
3Ni
	 �

j=1

Ni

drije
−�H−Es� �2�

where 
t is the thermal wavelength of an ion, 	i denotes the
chemical potential and Ni the total number of ions of type i.
For sake of simplicity, all energies are expressed in units of
kBT. The electrostatic interaction is

H =
1

2
	 dr�dr�c�r�vc�r,r���c�r�� , �3�

where �c is the charge distribution �in units of e�
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�c�r� = �
i=1

p

�
j=1

Ni

qi��r − rij� + �s�r� , �4�

and qi denotes the valency of each species, �s�r� stands for
the fixed charge distribution and vc�r ,r�� is the Coulomb
potential whose inverse is defined as

vc
−1�r,r�� = −

kBT

e2 � ���r� � ��r − r��� , �5�

where ��r� is a spatially varying permittivity. The self-energy
of mobile ions, which is subtracted from the total electro-
static energy, is

Es =
vc

b�0�
2 �

i=1

p

Niqi
2, �6�

where vc
b�r�=�B /r is the bare Coulomb potential for ��r�

=�w. After performing a Hubbard-Stratonovitch transforma-
tion and the summation over Ni in Eq. �2�, the grand-
canonical partition function takes the form of a functional
integral over an imaginary electrostatic auxiliary field �r�,
Z=
De−H��. The Hamiltonian is

H�� =	 dr� ��r�
2�e2 ���r��2 − i�s�r��r�

− �
i


ie
qi

2vc
b�0�/2+iqi�r�� �7�

where a rescaled fugacity


i = e	i/
t
3 �8�

has been introduced. The variational method consists in op-
timizing the first order cumulant

Fv = F0 + H − H0�0, �9�

where averages ¯ �0 are to be evaluated with respect to the
most general Gaussian Hamiltonian �20�,

H0�� =
1

2
	

r,r�
��r� − i0�r��v0

−1�r,r����r�� − i0�r���

�10�

and F0=− 1
2 tr ln v0. The variational principle consists in look-

ing for the optimal choices of the electrostatic kernel
v0�r ,r�� and the average electrostatic potential 0�r� which
extremize the variational grand potential Eq. �9�. The varia-
tional equations �Fv /�v0

−1�r ,r��=0 and �Fv /�0�r�=0, for a
symmetric electrolyte and ��r�=�w, yield

�0�r� − 8��Bq
e−q2W�r�/2 sinh�q0�r�� = − 4��B�s�r� ,

�11�

− �v0�r,r�� + 8��Bq2
e−q2W�r�/2 cosh�q0�r��v0�r,r��

= 4��B��r − r�� , �12�

where we have defined

W�r� � lim
r→r�

�v0�r,r�� − vc
b�r − r��� , �13�

whose physical signification will be given below. The second
terms on the left-hand side �lhs� of Eq. �11� and of Eq. �12�
have simple physical interpretations: the former is 4��B
times the local ionic charge density and the latter is 4��Bq2

times the local ionic concentration. The relations Eqs. �11�
and �12� are, respectively, similar in form to the nonlinear
Poisson-Boltzmann �NLPB� and Debye-Hückel �DH� equa-
tions, except that the charge and salt sources due to mobile
ions are replaced by their local values according to the Bolt-
zmann distribution. On the one hand, Eq. �11� is a Poisson-
Boltzmann-like equation where appears the local charge den-
sity proportional to sinh 0. This equation handles the
asymmetry induced by the surface through the electrostatic
potential 0, which ensures electroneutrality. This asymme-
try may be due to the effect of the surface charge on anion
and cation distributions �see Sec. III B� or due to dielectric
boundaries and image charges at neutral interfaces, which
give rise to interactions proportional to q2, and induce a local
nonzero 0 for asymmetric electrolytes �see Sec. III A�. On
the other hand, the generalized DH equation Eq. �12�, where
appears the local ionic concentration proportional to cosh 0,
fixes the Green’s function v0�r ,r�� evaluated at r with the
charge source located at r� and takes into account dielectric
jumps at boundaries.

These variational equations were first obtained within the
variational method by Netz and Orland �20�. They were also
derived in Ref. �32� within the Debye closure approach and
the BBGKY hierarchic chain. Yaroshchuk obtained an ap-
proximate solution of the closure equations for confined
electrolyte systems in order to study ion exclusion from
membranes �6�.

Equations �11� and �12� enclose the limiting cases of WC
��→0� and SC ��→��. To see that, it is interesting to
rewrite theses equations by renormalizing all lengths and the
fixed charge density, �s�r�, by the Gouy-Chapman length ac-
cording to r̃=r /�G, �̃s�r̃�=�G�s�r� /�s ��s is the average sur-
face charge density�. By introducing a new electrostatic po-
tential ̃0�r�=q0�r�, one can express the same set of
equations in an adimensional form

�̃̃0�r̃� − �e−�W̃�r̃�/2 sinh ̃0�r̃� = − 2�̃s�r̃� , �14�

− �̃ṽ0�r̃, r̃�� + �e−�W̃�r̃�/2 cosh ̃0�r̃�ṽ0�r̃, r̃�� = 4���r̃ − r̃�� ,

�15�

where ṽ0=v0�G /�B, W̃=W�G /�B and we have also intro-
duced the rescaled fugacity �=8�
�G

3� �33�. Now, one can
check that, in both limits �→0 and �→�, the coupling
between 0 and v0 in Eq. �11� disappears and the theory
becomes integrable. Finally, it is important to note that this
adimensional form of variational equations allows one to fo-
cus on the role of v0�r ,r� whose strength is controlled by �
in Eqs. �14� and �15�. However, even at the numerical level,
their explicit coupling does not allow for exact solutions for
general �.

VARIATIONAL APPROACH FOR ELECTROLYTE … PHYSICAL REVIEW E 81, 041601 �2010�

041601-3



In the present work, we make a restricted choice for
v0�r ,r�� and replace the local salt concentration in the form
of a local Debye-Hückel parameter �or inverse screening
length� ��r� in Eq. �12�,

��r�2 = 8��Bq2
e−q2W�r�/2 cosh�q0�r�� , �16�

by a constant piecewise one �v�r�=�v in the presence of ions
and �v�r�=0 in the salt-free parts of the system. Note that it
has been recently shown that many thermodynamic proper-
ties of electrolytes are successfully described with a Debye-
Hückel kernel �34�.

The inverse kernel �or the Green’s function� v0�r ,r�� is
then taken to be the solution to a generalized Debye-Hückel
equation

�− ����r��� + ��r��v
2�r��v0�r,r�� =

e2

kBT
��r − r�� �17�

with the boundary conditions associated with the dielectric
discontinuities of the system

lim
r→�−

v0�r,r�� = lim
r→�+

v0�r,r�� , �18�

lim
r→�−

��r� � v0�r,r�� = lim
r→�+

��r� � v0�r,r�� , �19�

where � denotes the dielectric interfaces. We now restrict
ourselves to planar geometries. We split the grand potential
�9� into three parts, Fv=F1+F2+F3, where F1 is the mean
electrostatic potential contribution,

F1 = S	 dz�−
��0�z��2

8��B
+ �s�z�0�z�

− �
i


ie
−qi

2W�z�/2−qi0�z�� , �20�

F2 the kernel part and F3 the unscreened van der Waals con-
tribution. The explicit forms of F2 and F3 are reported in
Appendix A. The first variational equation is given by
�Fv /��v=��F1+F2� /��v=0. This equation is the restricted
case of Eq. �12�. As we will see below, its explicit form
depends on the confinement geometry of the electrolyte sys-
tem as well as on the form of ��r�. The variational equation
for the electrostatic potential �35� �Fv /�0�z�=0 yields re-
gardless of the confinement geometry

�20

�z2 + 4��B�s�z� + �
i

4��Bqi
ie
−qi

2W�z�/2−qi0�z� = 0.

�21�

The second-order differential Eq. �21�, which is simply the
generalization of Eq. �11� for a general electrolyte in a planar
geometry, does not have closed-form solutions for spatially
variable W�z�. In what follows, we optimize the variational
grand potential Fv using restricted forms for the electrostatic
potential 0�z� and compare the result to the numerical so-
lution of Eq. �21� for single interfaces and slitlike pores.

The single ion concentration is given by

�i�z� = 
ie
−qi

2W�z�/2−qi0�z� �22�

and its spatial integral by

	 dz�i�z� = − 
i
�Fv

�
i
. �23�

We define the potential of mean force �PMF� of ions of type
i, �i�z�, as

�i�z� � − ln
�i�z�
�b

. �24�

By defining

w�z� � W�z� − Wb, �25�

where Wb is the value of W�z� in the bulk and comparing
Eqs. �22� and �24�, we find

�i�z� =
qi

2

2
w�z� + qi0�z� , �26�

qi
2

2
Wb = ln �i

b � 	i − ln��b
t
3� . �27�

Hence, qi
2Wb /2 is nothing else but the excess chemical po-

tential of ion i in the bulk and qi
2W�z� /2=ln �i�z� is its gen-

eralization for ion i at distance z from the interface. They are
related to the activity coefficients �i

b and �i�z�. Note that the
zero of the chemical potential is fixed by the condition that
0 vanishes in the bulk. The PMF, Eq. �26�, is thus the mean
free energy per ion �or chemical potential� needed to bring an
ion from the bulk at infinity to the point at distance z from
the interface, taking into account correlations with the sur-
rounding ionic cloud.

Before applying the variational procedure to single and
double interfaces, let us consider the variational approach in
the bulk. In this case, the variational potential 0 is equal to
0, and the variational grand potential Fv only depends on �v.
Two minima appear: one metastable minimum �v

0 at low val-
ues of �v, and a global minimum at infinity �Fv→−� for
�v→�� which is unphysical since at these large concentra-
tion values, finite size effects should be taken into account. It
has been shown by introducing a cutoff at small distances
�21�, that, for physical temperatures, this instability disap-
pears and the global minimum of Fv is �v

0 ��b given by the
Debye-Hückel limiting law,

	i = ln��b
t
3� −

qi
2

2
�b�B,

�b
2 = 4��B�

i

qi
2�i,b. �28�

From Eq. �27�, we thus find Wb�−�b�B and the potential
w�z� reduces to

w�z� � v0�z,z� − vc
b�0� + �b�B, �29�

which will be adopted in the rest of the paper. This choice is
consistent for �b�Bq2<4. Furthermore, problems due to the
formation of ion pairs do not enter at the level of the varia-
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tional approach we have adopted. Let us also report the fol-
lowing conversion relations

Ib � 0.19��b�B�2 mol L−1

�b � 3.29�I nm−1, �30�

where Ib=�iqi
2�i,b /2 is the ionic strength expressed in

mol L−1. Finally, the single-ion densities are given by

�i�z� = �i,be−qi
2w�z�/2−qi0�z�. �31�

III. SINGLE INTERFACE

The single interfacial system considered in this section
consists of a planar interface separating a salt-free left half-
space from a right half-space filled up with an electrolyte
solution of different species �Fig. 1�. In the general case, the
dielectric permittivity of the two half spaces may be different
�we note � the permittivity in the salt-free part�. The Green’s
function, which is chosen to be the solution of the DH equa-
tion with ��z�=���−z�+�w��z� and ��z�=�v��z� where ��z�
stands for the Heaviside distribution, is given for z�0 by �5�

w�z� = �B��b − �v� + �B	
0

� kdk

�k2 + �v
2
��k/�v�e−2�k2+�v

2z,

�32�

where

��x� =
�w

�x2 + 1 − �x

�w
�x2 + 1 + �x

. �33�

and F2 �Eq. �A4�� can be analytically computed �21�

F2 = V
�v

3

24�
+ S�

�v
2

32�
, �34�

where

�� ��x → �� =
�w − �

�w + �
. �35�

The first term on the right-hand side �rhs� of Eq. �34� is a
volumic contribution associated with a hypothetic bulk phase
with inverse Debye screening length �v and the second term
on the rhs involves interfacial effects, including the dielectric
jump �, and �v.

For the single interface system, as seen in Sec. II, F3 is
independent of �v and 0�z�, which means that it does not
contribute to the variational equations. By minimizing Eqs.
�20� and �34� with respect to �v for fixed 0�r� and taking
V→�, one exactly finds the same variational equation for �v
as for the bulk case. Hence, as discussed above, we have
�v=�b given by Eq. �28� and the first term of the rhs of Eq.
�32� vanishes. This result was obtained in �21� for the special
case �r�=0. It is of course not surprising to end up with the
same result for finite �r� since we know that the electro-
static potential should vanish in the bulk.

The potential w�z� given by Eq. �32� with �v=�b com-
bines in an intricate way both the image charge and solvation
contributions due to the presence of the interface. The image
force corresponds to the interaction of a given ion with the
polarized charges at the interface and is equivalent to the
interaction of the charged ion with its image located at the
other side of the dielectric surface. As it is well known, the
image-charge interaction is repulsive for ���w �e.g., water-
air interface� and attractive for ���w �the case for an
electrolyte-metal interface� �36�. The interfacial reduction in
solvation arises because an ion always prefers to be screened
by other ions in order to reduce its free energy. Hence, it is
attracted toward areas where the ion density is maximum �at
least at not too high concentrations for which steric repulsion
may predominate�. This term is nonzero even for �=�w since
for an ion close to the interface, there is a “hole” of screening
ions in the salt-free region �where �v=0�. Although our
choice of homogeneous variational inverse screening length
allows us to handle the deformation of ionic atmospheres
near interfaces that are impermeable to ions, it does not al-
low us to treat in detail the local variations in ion solvation
free energy arising from ion-ion correlations �except in an
average way in confined geometries where �v can differ from
the bulk value of the inverse screening length, see Sec. IV
below�.

Equation �32� simplifies in three cases:
�1� For �=0 ��=1�, where the solvation effect vanishes

because the lines of forces are totally excluded from the air
region �36�, Eq. �32� reduces to

w0�z� = �B
e−2�bz

2z
. �36�

This is the case where the image-charge repulsion is the
strongest �see Fig. 2�.

�2� A slightly better approximation for ��0 can be ob-
tained by artificially allowing salt to be present in the air
region. This gives rise to the “undistorted ionic atmosphere”
approximation �6�, for which w�z� in Eq. �36� is multiplied
by �,

w�z� = ��B
e−2�bz

2z
. �37�

Solvation effects are now absent and salt exclusion arises
solely from dielectric repulsion. Equation �37� is exact for
arbitrary �b and �=1, or arbitrary � and �b=0.

�3� In the absence of a dielectric discontinuity �=�w ��
=0�, the potential can be expressed as

FIG. 1. �Color online� Geometry for a single dielectric interface
�e.g., water–air� �a� and double interfaces or slitlike pores �b�.
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w�z� = �b�Bf��bz� ,

f�x� =
�1 + x�2e−2x

2x3 −
K2�2x�

x
, �38�

where K2�x� is the Bessel function of the second kind. One
notices that unlike the case ��0, the potential has a finite
value at the interface, i.e., w�0�=�b�B /3.

We note that in this case of one interface, we have
limz→� 0�z�=0 and the fugacity 
i of each species is fixed
by its bulk concentration according to

�i,b = lim
z→�

�i�z� = 
ie
qi

2�b�B/2, �39�

where we used Eq. �22�.

A. Neutral dielectric interface

We investigate in this section the physics of an asymmet-
ric electrolyte close to a neutral dielectric interface �e.g.,
water-air, liquid-liquid, or liquid-solid interface� located at
z=0 ��s=0�. For the sake of simplicity, we assume �=0,
which is a very good approximation for the air-water inter-
face characterized by �=1 �see the discussion in Ref. �4��.
Hence we keep the approximation w�z� given by Eq. �36�
unless otherwise stated. The electrolyte is composed of two
species of bulk density �+ and �− and charge �q+e�, −�q−e�
with q+�q−. In order to satisfy the electroneutrality in the
bulk, we impose �+q+=�−q−. According to Eq. �28�, the bulk
inverse screening length noted �b is given by

�b
2 = 4��Bq−�−�q− + q+� �40�

and the variational Eq. �21� for the electrostatic potential is a
modified Poisson-Boltzmann equation

�20

�z2 + 4��B�ch�z� = 0 �41�

with a local charge concentration

�ch�z� = �−q−�e−q+
2w�z�/2−q+0�z� − e−q−

2w�z�/2+q−0�z�� . �42�

Equation �41� cannot be solved analytically. Its numerical
solution, obtained using a fourth-order Runge-Kutta method,
is plotted in Fig. 3�a� for asymmetric electrolytes with diva-
lent and quadrivalent cations and the local charge density is
plotted in Fig. 3�b�.

Figure 3 clearly shows that, very close to the dielectric
interface for z�a, where the depletion distance a is defined
below, image-charge repulsion expulses all ions �since
�ch�z��exp�−1 /z� has an essential singularity� and 0 is flat.
For z�a, but still close to the interface, there is a layer
where the electrostatic field is almost constant �0 increases
linearly�, which is created by the charge separation of ions of
different valency due to repulsive image interactions. The
intensity of image forces increases with the square of ion
valency and close to the interface, �ch�z��0 since we as-
sumed q+�q− �the case for MgI2�. To ensure electroneutral-
ity, the local charge then becomes positive when we move

0.0 0.2 0.4 0.6
0.0

1.0

2.0

3.0

w(z)

z/lB

FIG. 2. �Color online� Potential w�z� in units of kBT for �=0
�black solid curve�, Eq. �36�, and �=�w �red dashed curve� and
�b�B=4.

(a)
0.00 1.00 2.00 3.00 4.00

z/lB

-0.16

-0.12

-0.08

-0.04

0.00

electrolyte 1:2
electrolyte 1:4

φ0

0.00 1.00 2.00 3.00 4.00
z/lB

-0.03

-0.01

0.01

0.03

0.05

electrolyte 1:2
electrolyte 1:4

l B
3

ρ ch

(b)

FIG. 3. �Color online� �a� Electrostatic potential 0 �in kBT
units� for asymmetric electrolytes: numerical solution of Eq. �41�
�symbols� and variational choice, Eq. �44� �solid lines�, for divalent
and quadrivalent ions and �b=0.242 mol L−1. Variational param-
eters are ��1.4�b, a /�B=0.12;0.21 and �=−0.10;−0.156. �b�
Associated local charge density profile �thick lines� and anion
�dashed lines� and cation �thin solid lines� concentrations.
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away from the surface �Fig. 3�b��, and the electrostatic po-
tential goes exponentially to zero with a typical relaxation
constant �. Moreover, in Fig. 3�a� one observes that when
the charge asymmetry increases, the electrostatic potential
also increases. Knowing that for symmetric electrolytes, 0
=0, our results confirm that the charge asymmetry is the
source of the electrostatic potential 0. Figure 3�b� is quali-
tatively similar to Fig. 1 of Bravina who had derived an
integral solution of Eq. �41� by using an approximation valid
for �b�B�1 �5�. In order to go further in the description of
the interfacial distribution of ions, we look for a restricted
variational function 0�z� which not only contains a small
number of variational parameters �such as a and �� but also
is as close as possible to the numerical solution. As sug-
gested by the description of Fig. 3, a continuous piecewise
0�z� is necessary to account for the essential singularity of
�ch�z�. To show this, let us expand Eq. �41� to order 0,

�20

�z2 � − 4��B�−q−�e−q+
2w�z�/2 − e−q−

2w�z�/2�

+ 4��B�−q−�q+e−q+
2w�z�/2 + q−e−q−

2w�z�/2�0. �43�

This linearization is legitimate, as seen in Fig. 3: q+�0�z��
�1 is satisfied for physical valencies. The first term on the
rhs of Eq. �43� corresponds to an effective local charge
source while the second term is responsible for the screening
of the potential. If we observe the charge distribution for
q2w�z��q0�z� and z�a, i.e., the first term of the rhs of Eq.
�43�, we notice that it behaves like a distorted peak. The
simplest function having a similar behavior is f�z�=cze−�z,
where c and � are constants. Hence, we choose a restricted
variational piecewise solution 0�z�

0�z� = �� for z� a ,

��1 + ��z − a��e−��z−a� for z� a .
� �44�

whose derivation is explained in Appendix B. The variational
parameters are the constant potential �, the depletion dis-
tance a and the inverse screening length �. The grand po-
tential �B5� derived for this solution was optimized with re-
spect to the variational parameters using the MATHEMATICA

software. The restricted variational potential �44� is com-
pared to the numerical solution of Eq. �41� in Fig. 3 for
electrolytes 1:2 and 1:4 and �−�B

3 =0.05. The agreement is
excellent. One notices that the screening of the effective sur-
face charge created by dielectric exclusion enters into play
when z��

−1. Finally, let us note that since �blB=1.37 and
�blB=1.77, respectively, for the monovalent and quadrivalent
electrolytes in Fig. 3, the method adopted by Bravina is not
valid.

To summarize, the charge separation is taken into account
by the potential � �which increases with q+ /q−� and the re-
laxation constant ��1.4�b is almost independent of q+ /q−.
Interestingly, the variational parameter a /�B�0.1–0.2 is less
than 1 nm. Indeed, for finite size ions, w�z� differs from Eq.
�36� very close to the interface and reaches a finite value at
z=0. The size of this region exactly corresponds to a which

is of the order of an ion radius. This is thus an artifact of our
pointlike ion model and occurs only for asymmetric electro-
lytes at neutral surfaces.

The surface tension � is equal to the excess grand poten-
tial defined as the difference between the grand potential of
the interfacial system and that of the bulk system,

� =
��b

2

32�
−
��

2

32��B
− �−	

0

�

dz��e−q−
2w�z�/2+q−0�z� − 1�

+
q−

q+
�e−q+

2w�z�/2−q+0�z� − 1�� . �45�

The surface tension for electrolytes characterized by q−=1
and q+=1 to 4 is plotted in Fig. 4 as a function of �−, because
the anion density is an experimentally accessible parameter.
Unlike symmetric electrolytes �21�, a plot with respect to �b

2

may lead to a different behavior. One notices that the in-
crease in valency asymmetry leads to an important increase
in the surface tension. This is of course mainly due to the
reduction of the cation density in the bulk by a factor of
q− /q+ necessary to satisfy the bulk electroneutrality �see the
second term in the integral of Eq. �45��.

B. Charged surfaces

We now consider a symmetric electrolyte in the proximity
of an interface of constant surface charge �s�0 located at
z=0. The variational Eq. �21� simplifies to

�2̃0

� z̃2 = 2��z̃� + �̃b
2e−�w̃�z̃�/2 sinh ̃0. �46�

The mean-field limit ��→0� of this equation corresponds to
the NLPB equation, whose solution reads

̃0�z̃� = 4 arctanh��be−�̃bz̃� �47�

where �b= �̃b−�1+ �̃b
2. In this section, we show that a piece-

wise solution for the electrostatic potential similar to the one
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βlB
2σ

FIG. 4. �Color online� Surface tension �B
2� /kBT for asymmetric

electrolytes vs the anion bulk concentration, for increasing asym-
metry q+ /q−=1 to 4 from bottom to top.
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introduced in Sec. III A agrees very well with the numerical
solution of Eq. �46�. Inspired by the existence of a salt-free
layer close to the interface and a mean-field regime far from
the interface �WC�, we propose two types of piecewise varia-
tional functions �see Appendix C�. The first variational
choice obeys the Poisson equation in the first zone of size h
and the nonlinear Poisson-Boltzmann solution in the second
zone,

̃0
NL�z̃� =�4 arctanh � + 2�z̃ − h̃� for z̃� h̃ ,

4 arctanh��e−�̃�z̃−h̃�� for z̃� h̃ ,
� �48�

where �= �̃−�1+ �̃
2 . Variational parameters are h and an

effective inverse screening length �. The second type of
trial potential obeys the Poisson equation with a charge
renormalization in the first zone and the linearized Poisson-
Boltzmann solution in the second zone,

̃0
L�z̃� = �−

2�

�̃
+ 2��z̃ − h̃� for z̃� h̃ ,

−
2�

�̃
e−�̃�z̃−h̃�

for z̃� h̃ .� �49�

Variational parameters are h̃, �̃, and the charge renormaliza-
tion �, which takes into account the nonlinear effects at the
mean-field level �20�. The explicit form of the associated
variational free energies is reported in Appendix C. The inset
of Fig. 5 displays the size of the SC layer h against �. Our

approach predicts a logarithmic dependence h̃� ln �, the
factor in front of the logarithm being �̃b

−1 for �̃b�1. The
restricted choices for 0 are compared with the full numeri-
cal solution of Eq. �46� in the same figure for �=0. We see
that, as in the previous section, the numerical solution and

the restricted ones match perfectly. Hence salt-exclusion ef-
fects are essentially carried by the parameter h. Furthermore,
one notices that ̃0�z̃� relaxes to zero between z̃= h̃ and z̃
= h̃+2�̃

−1. At �b�G=4 we are in the linear regime of the PB
equation and therefore one has ��1. The charge renormal-
ization idea was introduced by Alexander et al. �15�, who
showed that the nonlinearity of the PB equation can be ef-
fectively taken into account at long distances by renormaliz-
ing the fixed charge source and extending the linearized zone
where �̃0��1 to the whole domain. A linear solution of the
form Eq. �49� can be very helpful for complicated geom-
etries or in the presence of a nonuniform charge distribution
where the NLPB equation does not present an analytical so-
lution even at the mean-field level. These issues will be dis-
cussed in a future work.

Figure 6 displays the ion concentrations �i�z� /�i,b=e−�i,
which are related to the ion PMF Eq. �24�, computed with
the restricted solution Eq. �48� for several values of �. As
already said in the Introduction, in rescaled distance, the cou-
pling parameter � measures the strength of the excess
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FIG. 5. �Color online� Electrostatic potential, 0 �in units of
kBT�: numerical solution of Eq. �46� �symbols� and restricted varia-
tional choices Eqs. �48� and �49� for �=0, �b�G=4, and �=1, 10,
100, and 1000 �from top to bottom�. The variational parameters are,
respectively, �=3.83,3.74,3.69,3.66 and ��1. Markers on the

x-axis denote, for each curve, the size, h̃, of the SC zone, plotted vs
ln � in the inset, where NLPB and LPB solutions are
superimposed.
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FIG. 6. �Color online� Ion densities for �b�G=4, and �a� �=0
and �b� �=�w, for increasing coupling parameter: from left to right,
�=1, 10, 100, and 1000. Solid lines correspond to counterions,
dashed lines to coions and dashed-dotted lines to the Poisson-
Boltzmann result for counterions �47�.

BUYUKDAGLI, MANGHI, AND PALMERI PHYSICAL REVIEW E 81, 041601 �2010�

041601-8



chemical potential, w�z�. We first see that for coions as well
as for counterions, the depletion layer in rescaled units in the
proximity of the dielectric interface increases with � due to
the image-charge repulsion and/or solvation effect, i.e., the
term e−�w̃�z̃�/2 in Eq. �46�. Furthermore, one notices that the
counterion density exhibits a maximum. This concentration
peak is due to the competition between the electrostatic at-
tractive force toward the charged wall and the repulsive im-
age and solvation interactions. It is important to note that in
the particular case �=�w, there is no depletion layer for �
�10.

IV. DOUBLE INTERFACE

In this section, the variational method is applied to a
double interface system which consists of a slitlike pore of
thickness d, in contact with an external ion reservoir at its
extremities �Fig. 1�b��. The dielectric constant is �w inside
the pore and � in the outer space. The electrolyte occupies
the pore and the external space is salt free. The solution of
the DH Eq. �A2� in this geometry is �6�

w�z� = ��b − �v��B + �B	
0

� kdk

�k2 + �v
2

��k/�v�

e2d�k2+�v
2

− �2�k/�v�

� �2��k/�v� + e2�d−z��k2+�v
2

+ e2z�k2+�v
2
� �50�

where ��x� is given in Eq. �33�. The variational parameter of
the Green’s function is the variational inverse screening
length �v which is taken uniform �generalized Onsager-
Samaras approximation, see �5,21��. A more complicated ap-
proach has been previously developed in Ref. �22� where the
authors introduced a piecewise form for the variational
screening length, i.e., ��z�=�v over a layer of size h and
�v=�b in the middle of the pore. Although this choice is
more general than ours, the minimization procedure with re-
spect to �v is significantly longer than in our case and the
variational equation is much more complicated. Conse-
quently, this piecewise approach is not very practical when
one wishes to study a charged membrane where the external
field created by the surface charge considerably complicates
the technical task �see Sec. IV B�. We show that the simple
variational choice adopted here captures the essential physics
with less computational effort.

As in Eq. �32�, the integral on the rhs of Eq. �50� takes
into account both image-charge and solvation effects due to
the two interfaces, whereas the first term is the Debye result
for the difference between the bulk and a hypothetic bulk of
inverse screening length �v. We should emphasize that, in the
present case, the spatial integrations in Eqs. �A3� and �A4�
run over the confined space, that is from z=0 to z=d. By
substituting the solution Eq. �50� into Eqs. �20� and �A5� and
performing the integration over z, one finds �23�

F2 + F3

S
=

d�v
3

24�
+
��v

2

16�
+
�v

2

4�
	

1

�

dxx ln�1 − �̄2�x�e−2�vdx�

+
�v

2

8�
	

1

�

dx
��̄�x� − �̄3�x��/x − 2�vd�̄2�x�

e2d�vx − �̄2�x�
, �51�

where we have defined �̄�x�=���x2−1�.

The limiting case �=0 allows for closed-form expres-
sions. This limit is a good approximation for describing bio-
logical and artificial pores characterized by an external di-
electric constant much lower than the internal one. In the
following part of the work, we will deal most of the time
with the special case �=0, unless stated otherwise. In this
limit, Eq. �51� simplifies to

F2 + F3

S
=
�v

3d

24�
+
�v

2

16�
�1 + 2 ln�1 − e−2d�v�� −

�v

8�d
Li2�e−2d�v�

−
Li3�e−2d�v�

16�d2 , �52�

where Lin�x� stands for the polylogarithm function and ��x�
the Riemann zeta function �see Appendix D�. Within the
same limit ��=0�, ��x�=1 and we obtain an analytical ex-
pression for the Green’s function Eq. �50�

w0�z� = ��b − �v��B −
�B

d
ln�1 − e−2d�v� +

�B

2d

����e−2d�v;1 −
z

d
,0�

+
d

z
e2

−2�vz
2F1�1,

z

d
,1 +

z

d
,e−2d�v�� , �53�

where ��x ;y ,z� is the incomplete Beta function and

2F1�a ,b ;c ;d� the hypergeometric series. The definitions of
these special functions are given in Appendix D. At this step,
the PMF thus depends on three adimensional parameters,
namely d�v, d�b, and d /�B.

For the system with a single interface, the ion fugacity 
i
was fixed by the bulk density. In the present case where the
confined system is in contact with an external reservoir, 
i is
fixed by chemical equilibrium,


i = 
i,b = �i,be−qi
2�b�B/2, �54�

where �b and 
i,b are, respectively, the inverse Debye screen-
ing length and the fugacity in the bulk reservoir �see Eq.
�28��. Once this constraint is taken into account, the last term
of the electrostatic part of the variational grand potential Eq.

�20� can be written as −�i�i,b
0
ddze−qi

2w�z�/2−qi0�z�.
Equation �21� then becomes for a symmetric q :q electro-

lyte,

�2̃0

�z2 − �b
2e−q2w�z�/2 sinh ̃0 = − 4�q�B�s���z� + ��z − d�� .

�55�

The optimization of Fv=F1+F2+F3 given by Eq. �20� and
�52� with respect to the inverse trial screening length �v
leads to the following variational equation for �v,
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�d�v�2 + d�v tanh�d�v�

= �d�b�2	
0

1

dxe−q2w0�xd�/2cosh�̃0�xd��

� �1 +
cosh��2x − 1�d�v�

cosh�d�v� � . �56�

Within the particular choice that fixed the functional form of
the �v dependent Green’s function Eq. �53�, the two coupled
Eqs. �55� and �56� are the most general variational equations.
In the following, we first consider the case of neutral pores
and then the more general case of charged pores.

A. Neutral pore, symmetric electrolyte

In the case of a symmetric q :q electrolyte and a neutral
membrane, �s=0, the solution of Eq. �55� is naturally 0
=0. The variational parameter �v is solution of Eq. �56� with
0=0 and w�z�=w0�z� given by Eq. �53� when �=0, which
can be written as d�v, a function only of d�b and �B /d. Let
us note that Eq. �56� can be solved with the Mathematica
software in a fraction of a second.

Within the Debye-Hückel closure approach, Yaroshchuk
�see Eq. �59� of Ref. �6�� obtains a self-consistent approxi-
mation for constant �v by replacing the exponential term of
Eq. �12� with its average value in the pore,

�v
2 = �b

2	
0

1

dxe−q2w�xd�/2, �57�

which should be compared with Eq. �56� with 0=0. In or-
der to simplify the numerical task, Yaroshchuk introduces a
further approximation in which he replaces the potential w�z�
inside the depletion term of Eq. �57� by its value in the
middle of the pore, w�d /2�. Then Eq. �57� takes the simpler
form

�v
2 = �b

2e−q2w�d/2�/2. �58�

The self-consistent midpoint approximation is frequently
used in nanofiltration theories �6,29,37�. For �=0, the mid-
point potential has the simple form w�d /2�= ��b−�v��B
−2�B ln�1−e−�vd� /d. This approach is compared with the full
variational treatment in Fig. 7 where the adimensional in-
verse screening length in the pore �v /�b is plotted as a func-
tion of the pore size d. We first note that as d decreases
below a critical value d�, the pore is empty of salt and �v
=0. The inset of Fig. 7 shows d� versus the inverse bulk
screening length. Searching for d such that �v=0 in Eq. �56�
leads to the same equation as Eq. �57�, thus the value of d� is
identical within both approaches. However, Fig. 7 shows that
the midpoint approximation, Eq. �58�, overestimates the in-
ternal salt concentration as well as the abruptness of the
crossover to an ion-free regime for decreasing pore size. In-
deed, this approximation is equivalent to neglecting the
strong ion exclusion close to the pore surfaces �which is
larger than in the middle of the pore�. A similar behavior was
also observed in Fig. 6 of Ref. �22� for the screening length
in the neighborhood of the dielectric interface.

The effect of the dielectric discontinuity is illustrated in
Fig. 8�a� where the inverse internal screening length is com-

pared for � between 0 and �w=78 where the image-charge
repulsion is absent and the solvation effect is solely respon-
sible for ion repulsion. First of all, one observes that the total
exclusion of ions in small pores is specific to the case �=0.
Moreover, in the solvation only case, the inverse screening
length inside the pore only slightly deviates from the bulk
value, 0.8��v /�b�1. This clearly indicates that, within the
pointlike ion model considered in this work, the image-
charge interaction brings the main contribution to salt rejec-
tion from neutral membranes. Roughly speaking, the image-
charge and solvation effects come into play when the surface
of the ionic cloud of radius �b

−1 around a single ion located at
the pore center touches the pore wall, i.e., for �b

−1�d /2. This
simple picture fixes a characteristic length dch�2�b

−1 below
which the internal ion density significantly deviates from the
bulk value and ion rejection takes place. This can be verified
for intermediate salt densities in the bottom plot of Fig. 7 and
the top plot of Fig. 8.

Since image-charge effects are proportional to q2, we il-
lustrate in Fig. 8�b� the effect of ion valency q. At pore size
d�2.5�B�1.8 nm, where the inverse internal screening
length for monovalent ions is close to 80% of its saturation
value �b, the exclusion of divalent ions from the membrane
is total. This effect driven by image interactions is even
much more pronounced for trivalent ions. Since the typical
pore size of nanofiltration membranes ranges between 0.5
and 2 nm, we thus explain why ion valency plays a central
role in ion selectivity, even inside neutral pores.

The salt reflection coefficient, frequently used in mem-
brane transport theories to characterize the maximum salt
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FIG. 7. �Color online� Inverse screening length inside the neu-
tral membrane �monovalent ions� normalized by �b vs the pore size
d /�B for �=0 and �a� �b�B=0.1 ��b=1.926 mmol L−1�, �b� �b�B

=1 ��b=0.1926 mol L−1�. Dashed lines correspond to the midpoint
approximation, Eq. �58�. The inset shows the characteristic pore
size corresponding to total ionic exclusion as a function of the in-
verse bulk screening length. The bottom curve corresponds to
monovalent ions and the top curve to divalent ions.
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rejection �obtained at high pressure� is related to the ratio of
the net flux of ions across the membrane to that of the sol-
vent volume flux J per unit transverse surface,

�s � 1 −
1

J�b
	

0

d

v��z���z�dz

= 1 – 12	
1/2

1

x�1 − x�e−q2w�xd�/2dx . �59�

where we have used, in the second equality, the Poiseuille
velocity profile, v��z�= 6J

d3 z�d−z� in the pore and the PMF
given by Eq. �24�. It depends only on the parameters �b�B
and d /�B. In certain nanopores with hydrophobic surfaces,
the solvent flux may considerably deviate from the Poiseuille
profile �see �38��. In this case, the velocity profile is flat,
v��z�= J

d �plug flow�. We emphasize that since the velocity
profile is normalized in both cases, the midpoint approxima-
tion is unable to distinguish between a Poiseuille and a plug
flow velocity profile. Figure 9 displays �s as a function of

the inverse bulk screening length for two pore sizes d=2�B
and d=5�B. As seen by Yaroshchuk, decreasing the pore size
shifts the curves to higher bulk concentration and thus in-
creases the range of bulk concentration where nearly total
salt rejection occurs. However, quantitatively, the difference
between the variational and midpoint approaches becomes
significant at high bulk concentrations and this difference is
accentuated in the case of plug-flow �for which �s is higher
when compared to the Poiseuille case because the flow ve-
locity no longer vanishes at the pore wall where the salt
exclusion is strongest�. This deviation is again due to the
midpoint approximation of Eq. �58� in which the image in-
teractions are underestimated. However since the velocity
profile vanishes at the solid surface for the Poiseuille flow,
the deficiencies of the midpoint approximation are less vis-
ible in �s than in �v in this case.

Finally, we compute the disjoining pressure within our
variational approach. We compare in Appendix E the result
with that of the more involved variational scheme presented
in Ref. �22� and show that one gets a very similar behavior,
revealing that the simpler variational method is able to cap-
ture the essential physics of the slit pore.

As stressed above, the main benefit obtained from the
simpler approach proposed in this work is that the minimi-
zation procedure is much less time consuming. This point
becomes crucial when considering the fixed charge of the
membrane, which is thoroughly studied in the next section.

B. Charged pore, symmetric electrolyte

In this section, we apply the variational approach to a
slitlike pore of surface charge �s�0. In the following, we
will solve Eqs. �55� and �56� numerically in order to test, as
in the case of a single charged surface, the validity of re-
stricted trial forms for 0�z�. We define the partition coeffi-
cients in the pore for counterions and coions, k+ and k−, as
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FIG. 8. �Color online� Inverse screening length inside the mem-
brane vs the pore size d /�B ��w=78,�b�B=1�. �a� From bottom to
top: �=0 ��=1�, �=3.2 ��=0.92�, �=39 ��=1 /3�, and �=78 ��
=0�. �b� Log-linear plot for monovalent, divalent and trivalent ions,
from left to right ��=0�.
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FIG. 9. �Color online� Salt reflection coefficient �dimensionless�
against the logarithm of the inverse bulk screening length for �=0
and two pore sizes, d /�B=2 and 5 �light �red� lines correspond to
the midpoint approximation, Eq. �58��.
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k �
� 
�b

= 	
0

d dz

d
e−� �z�. �60�

where � �z� is given by Eq. �26�.

1. Effective Donnan Potential

When one considers a charged nanopore, because of its
small size, gradients of the potential 0 can be neglected as a
first approximation. We thus assume a constant potential ̄0.
The so-called effective Donnan potential ̄0 introduced by
Yaroshchuk �6� will be fixed by the variational principle. By
differentiating the grand potential Eq. �20� with respect to ̄0
�or equivalently integrating Eq. �55� from z=0 to z=d with
�̄0=0�, we find

2��s� = − 2q�b sinh�q̄0�	
0

d

dze−q2w�z�/2, �61�

which is simply the electroneutrality relation in the pore,
taken in charge by the electrostatic potential ̄0. By defining

! = 	
0

1

dx exp�− q2�Bw̄�xd�/�2d�� , �62�

=	
0

1

dx exp�−�w̄�xd̃�/�2d̃�� , �63�

where w̄�x��w�x�d /�B, we have k =! exp�"q̄0� and Eq.
�61� can be rewritten as

k+ − k− = 2
��s�

q�bd
=

Xm

q�b
=

8

�b
2d�G

=
8

�̃b
2d̃

, �64�

where we introduce in the third equality the Gouy-Chapman
length �G and the quantity Xm=2��s� /d, frequently used in
nanofiltration theories, corresponds to the volume charge
density of the membrane. Hence, the partition coefficient of
the charge, k+−k−, does not depend on �, i.e., charge image
and solvation forces. By using Eq. �61� in order to eliminate
the potential ̄0 from Eq. �60�, one can rewrite the partition
coefficients in the form

k = !e"q̄0 =�!2 + � 4

�̃b
2d̃
�2

 
4

�̃b
2d̃

. �65�

By substituting into Eq. �56� the analytical expression for ̄0
obtained from Eq. �61� �or Eq. �65��, one obtains a single
variational equation for �v to be solved numerically,

�d̃�̃v�2 + d̃�̃v tanh�d̃�̃v�

= �d̃�̃b�2�!2 + � 4

�̃b
2d̃
�2

��1 + 	
0

1

dxe−�w̃�xd̃�/2cosh��2x − 1�d̃�̃v�

! cosh�d̃�̃v�
� .

�66�

The numerical solution of Eq. �66� is plotted in Fig. 10 as a
function of the coupling parameter �. We see that as we
move from the WC limit to the SC one by increasing �, the
pore evolves from a high to a low salt regime. This quite
rapid crossover, which results from the exclusion of ions
from the membrane, is mainly due to repulsive image-charge
and solvation forces controlled by ! whose effects increase
with increasing �.

In Fig. 11 are plotted the partition coefficients of counte-
rions and coions, Eq. �60�, as a function of �. Here again, k 
decreases with increasing �. Moreover, we clearly see that
the rejection of coions from the membrane becomes total for

FIG. 10. �Color online� Inverse internal screening length �v
against � for �b�G=2, �=0 and �a� d=3�G and �b� d=10�G. Com-
parison of various approximations: Yaroshchuk, Eq. �71� �dia-
monds�, variational Donnan potential �dashed line�, piecewise solu-
tions �solid line�, and numerical results �squares�. Horizontal lines
corresponds to the WC limit, Eq. �67� �top�, and SC limit, Eq. �70�
�bottom�.
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FIG. 11. �Color online� Ionic partition coefficients, k , vs � for
�b�G=2, �=0, and �a� d=3�G and �b� d=10�G. The horizontal line
corresponds to the SC limit for counterions. As explained in the
text, we note that k+−k−=8 / ��b

2d�G�.
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��4. In other words, even for intermediate coupling param-
eter values, we are in a counterion-only state. This is obvi-
ously related to the electrical repulsion of coions by the
charged surface.

In the asymptotic WC limit ��→0�, !=1 and we find the
classical Donnan results in mean-field where k−=k+

−1=eq̄0

with q̄0=arcsinh�4 / ��̃b
2d̃��. The variational Eqs. �66� and

�65� reduce to

�v
2 = �b

2�1 + � 4

�̃b
2d̃
�2

, �67�

k =�1 + � 4

�̃b
2d̃
�2

 
4

�̃b
2d̃

, �68�

Quite interestingly, the relation Eq. �67� shows that, even in
the mean-field limit, due to the ion charge imbalance created
by the pore surface charge, the inverse screening length is
larger than the Debye-Hückel value �b. In the case of small
pores or strongly charged pores or at low values of the bulk
ionic strength, i.e., �b

2�Gd�1 or d�b� ��s� /q, we find �v
�2 /��Gd and �−=0 and �+=2��s� / �dq�. We thus find the
classical Poisson-Boltzmann result for counterions only �25�.
The counterion-only case is also called good coion exclusion
limit �GCE�, a notion introduced in the context of nanofiltra-
tion theories �6,39,40�. Hence, in this limit the quantity of
counterions in the membrane is independent of the bulk den-
sity and depends only on the pore size d and the surface
charge density �s. In the case of a pore of size d�1 nm and
fixed surface charge �s�0.03 nm−2, this limit can be
reached with an electrolyte of bulk concentration �b
�50 mmol L−1. In the opposite limit �b

2�Gd�1, one finds
�v��b and � =�b.

In the SC limit �→�, !=0 and Eq. �66� simplifies to

�d̃�̃v�2 + d̃�̃v tanh�d̃�̃v� = 4d̃�1 + sech�d̃�̃v�� . �69�

For d��G �d̃�1�, the solution of Eq. �69� yields with a high
accuracy

�̃v �
�1 + 16d̃ − 1

2d̃
. �70�

The partition coefficients simplify to k−=0 and k+=8 / �d̃�̃b
2�

=2��s� / �dq�b� and we find the counterion only case �or GCE
limit� without image-charge forces discussed by Netz �25�.
Partition coefficients in the SC limit and variational inverse
screening length in both limits, Eqs. �67� and �70�, are illus-
trated in Figs. 10 and 11 by dotted reference lines. Conse-
quently, one reaches for �=0 the GCE limit exclusively for
low salt density or small pore size, while the SC limit leads
to GCE for arbitrary bulk density. It is also important to note
that although the pore-averaged densities of ions are the
same in the GCE limit of WC and SC regimes, the density
profiles are different since when one moves away from the
pore center, the counterion densities close to the interface
increase in the WC limit due to the surface charge attraction

and decrease in the SC limit due to the image-charge repul-
sion.

It is interesting to compare this variational approach to the
approximate midpoint approach of Yaroshchuk �6�. For
charged membranes, he considers a constant potential and
replaces the exponential term of Eqs. �11� and �12� by its
value in the middle of the pore. He obtains the following
self-consistent equations:

�2 = �b
2e−q2w�d/2�/2 cosh�q̄0� , �71�

2��s� = − 2qd�b sinh�q̄0�e−q2w�d/2�/2. �72�

The above set of equations are frequently used in nanofiltra-
tion theories �6,29,37�. By combining these equations in or-
der to eliminate ̄0, one obtains an approximate nonlinear
equation for �v �approximation CYar in Fig. 10�. In the limit
of a high surface charge, the nonlinear Eqs. �71� and �72�
depend only on the pore size d and the surface charge density
�s,

�2 �
8��Bq��s�

d
=

4

�Gd
� �s. �73�

One can verify that in the regime of strong surface charge,
Eq. �73� is also obtained from the asymptotic solution Eq.
�70� since the dependence of the PMF on z is killed when
�→� and only the midpore value contributes. The numeri-
cal solution of Eq. �71� and �72� is illustrated as a function of
� in Fig. 10, and as a function of the surface charge in Fig.
12, together with the asymptotic formula Eq. �73�. For the
parameter range considered in Fig. 10, the solution of Eq.
�71� strongly deviates from the result of the full variational

σ lB
2

0.0

1.0

2.0

3.0

κvlB Donnan variational
CYar
asymptotic limit

(a)

0.0 0.1 0.2 0.3 0.4
0.0

1.0

2.0

3.0 (b)

(a)

κvlB

FIG. 12. �Color online� Inverse internal screening length �v
against the reduced surface charge �̄=�B

2�s for d=�B, �=0 and �a�
�b�B=1, �b� �b�B=2: constant variational Donnan approximation
�solid line�, asymptotic result Eq. �73� �dotted line� and Yaroshchuk
approximation Eq. �71� �dashed line�.
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calculation. For ��2, the midpoint approach follows an in-
correct trend with increasing �. It is clearly seen that at
some values of the coupling parameter, Eqs. �71� and �72� do
not even present a numerical solution. Using the relations
d /�B= d̃ /� and �B�b=��̃b for monovalent ions, one can
verify that the regime where the important deviations take
place corresponds to high ion concentrations. This is con-
firmed in Fig. 12: the error incurred by the approximate mid-
point solution of Yaroshchuk increases with the electrolyte
concentration.

In Sec. IV A on neutral nanopores, it has been underlined
that, due to the image-charge repulsion, the ionic concentra-
tion inside the pore decreases with the pore size d �see Fig.
8�. In the present case of charged nanopores, this result is
modified: Eqs. �67�, �70�, and �73� show that for strongly
charged nanopores the concentration of ions inside the pore
decreases with d. Moreover, the very high charge limit is a
counterion-only state and Eq. �61� shows that, for a fixed
surface charge density, electroneutrality alone fixes the num-
ber of counterions, N+, in a layer of length d joining both
interfaces, and image-charge interactions play a little role.
This is the reason why �v

2��+=N+ / �Sd� decreases for in-
creasing d.

Hence, we expect an intermediate charge regime which
interpolates between image force counterion repulsion �case
of neutral pores, see Sec. IV A� and counterion attraction by
the fixed surface charge. This is illustrated in Fig. 13 where
the partition coefficients are plotted vs d for increasing �s.
As expected, coions are electrostatically pushed away by the
surface charge which adds to the repulsive image forces,
leading to a stronger coion exclusion than for neutral pores.
The issue is more subtle for counterions: obviously, increas-
ing the surface charge, �s, at constant pore size, d, increases
k+. However, for small fixed �s, a regime where image
charge and direct electrostatic forces compete, k+ is non-
monotonic with d. Below a characteristic pore size, d�dcr,
the electrostatic attraction dominates over image-charge re-
pulsion and due to the mechanism explained above, k+ de-
creases for increasing d. For d�dcr, the effect of the surface
charge weakens and k+ starts increasing with d. In this re-
gime, the pore behaves like a neutral system. The inset of
Fig. 13 shows that dcr increases when �s increases. For
highly charged membranes lB

2�s�0.1, there is no minimum
in k+�d�, and the average counterion density inside the mem-
brane monotonically decreases toward the bulk value. Ex-
perimental values for surface charges are 0��s�0.5 nm−2

�or 0��B
2�s�0.25�, which corresponds to physically attain-

able values of dcr. The interplay between image forces and
direct electrostatic attraction is thus relevant to the experi-
mental situation.

The variational Donnan potential approximation is thus of
great interest since it yields physical insight into the exclu-
sion mechanism and allows a reduction in the computational
complexity. However, membranes and nanopores are often
highly charged and spatial variations in the electrostatic po-
tential inside the pore may play an important role. In the
following we seek a piecewise solution for 0�z�.

2. Piecewise solution

The variational modified PB Eq. �55� for ̃0 shows that as
one goes closer to the dielectric interface, w�z� increases and

the screening experienced by the potential ̃0 gradually de-
creases because of ionic exclusion. This nonperturbative ef-
fect which originates from the strong charge-image repulsion
inspires our choice for the variational potential ̃0�z�. We opt
for a piecewise solution as in Sec. III: a salt-free solution in
the zone 0�z�h and the solution of the linearized PB equa-
tion for h�z�d /2, with a charge renormalization parameter
� taking into account nonlinear effects. By inserting the
boundary conditions �̃0 /�z �z=0=2� /�G and �̃0 /�z �z=d/2=0
and imposing the continuity of ̃0 and its first derivative at
z=h �Eq. �B3��, the piecewise potential, solution of Eq. �55�
with �b

2 exp�−q2w�z� /2� replaced by �
2 , takes the form

̃0�z� = ��̄ −
2�

�G
�z −

d

2
� for 0� z� h ,

� −
2�

�G�

cosh���d/2 − z��
sinh���d/2 − h��

for h� z� d/2,�
�74�

where
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FIG. 13. �Color online� Partition coefficient in the pore of
coions �a� and counterions �b� vs the pore size d /�B for increasing
surface charge density, �s�B

2 =0,0.004,0.02,0.04,0.08,0.12, from
left to right, and �b�B=1. Inset: critical pore size dcr vs the surface
charge density �s ��=0�.
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�̄ = � +
2�

�G
�d

2
− h� −

2�

�G�
coth���d

2
− h�� �75�

is imposed by continuity, and �, �, h, and � are the varia-
tional parameters. By injecting the piecewise solution Eq.
�74� into Eq. �20�, we finally obtain

F1

S
= −

2��s�
q
���� − 2�

h

�G
−

�2�d/2 − h�
2�G sinh2���d/2 − h��

+
��� − 4�
2�G�

coth���d/2 − h�� + ��
−

�b
2

4��Bq2	
0

d

dze−q2w�z�/2 cosh ̃0�z� . �76�

The solution to the variational problem is found by optimi-
zation of the total grand potential F=F1+F2 with respect to
�, �, h, �, and �v, where F2+F3 is given by Eq. �51� for a
general value of � and by Eq. �52� for �=0. This was easily
carried out with Mathematica software.

A posteriori, we checked that two restricted forms for 0,
homogeneous with h=0 and piecewise with �=0, were good
variational choices. Figure 14 compares the ion densities ob-
tained from the variational approach �with homogeneous 0�
with the predictions of the MC simulations �30� and the

NLPB equation for �=�W, d̃=2 and �=1. Two variational
choices are displayed in this figure, namely, the homoge-
neous approach with four parameters �v=1.68,�=1.36,�
=0.16,�=0.97 and a simpler choice with �=1, �=�v and
two variational parameters: �v=1.69,�=−0.18. In the latter
case, one can obtain an analytical solution for � and injecting
this solution into the free energy, one is left with a single
parameter �v to be varied in order to find the optimal solu-
tion. We notice that with both choices, the agreement be-

tween the variational method and MC result is good. It is
clearly seen that the proposed approach can reproduce with a
good quantitative accuracy the reduced solvation induced
ionic exclusion, an effect absent at the mean-field level.
Moreover, we verified that with the single parameter choice,
one can reproduce at the mean-field variational level the ion
density profiles obtained from the numerical solution of the
NLPB equation �dashed lines in Fig. 14� almost exactly. We
finally note that the small discrepancy between the predic-
tions of the variational approach and the MC results close to
the interface may be due to either numerical errors in the
simulation, or our use of the generalized Onsager-Samaras
approximation �our homogeneous choice for the inverse ef-
fective screening length appearing in the Green’s function v0
does not account for local enhancement or diminution of
ionic screening due to variations in local ionic density�.

For �=0, the piecewise and homogeneous solutions are
compared with the full numerical solution of Eqs. �55� and
�56� in Fig. 15 for �=1 and 100. First of all, one observes
that for �=1, both variational solutions match perfectly well
with the numerical solutions. For �=100, the piecewise so-
lution matches also perfectly well with the numerical one,
whereas the matching of the homogeneous one is poorer. The
optimal values of the variational parameters ��v ,� ,� ,h� for
the piecewise choice are �2.57,2.6,0.98,0.15� for �=1 and
�0.83,0.13,0.97,1.37� for �=100.

The form of the electrostatic potential 0�z� is intimately
related to ionic concentrations. Ion densities inside the pore
are plotted in Fig. 16 for �=1 and �=100. We first notice
that even at �=1, the counterion density is quite different
from the mean-field prediction. Furthermore, due to image-
charge and electrostatic repulsions from both sides, the coion
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FIG. 14. �Color online� Ion densities in the nanopore for �
=�W, �=1, and h /�G=2. The continuous lines correspond to the
prediction of the variational method with four parameters, the
dashed-dotted line the variational solution with a single parameter
�see the text�, the symbols are MC results �Fig. 2 of �30�� and the
dashed lines denote the numerical solution of the nonlinear PB
result.
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FIG. 15. �Color online� Variational electrostatic potential �in
units of kBT� in the nanopore. Comparison of the numerical solution
of Eq. �55� with the homogeneous �h=0� and piecewise solution of
Eq. �C5� for �G�b=3 and �a� �=1, �b� �=100. The horizontal line
is the Donnan potential obtained from Eq. �61� ��=0�.
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density has its maximum in the middle of the pore. On the
other hand, the counterion density exhibits a double peak,
symmetric with respect to the middle of the pore, which
originates from the attractive force created by the fixed
charge and the repulsive image forces. When � increases,
we see that the counterion density close to the wall shrinks
and becomes practically flat in the middle of the pore. Hence
the potential 0 linearly increases with z until the counterion
peak is reached and then it remains almost constant since the
counterion layer screens the electrostatic field created by the
surface charge �since in Fig. 15, z is renormalized by the
Gouy-Chapman length which decreases with increasing �s,
one does not see the increase of the slope 0�z=0��. In
agreement with the variational Donnan approximation above,
coions are totally excluded from the pore for large �. Hence,
the piecewise potential allows one to go beyond the varia-
tional Donnan approximation within which the density pro-
file does not exhibit any concentration peak.

The inverse screening length �v obtained with the piece-
wise solution is compared in Fig. 10 with the prediction of
the Donnan approximation and that of the numerical solu-
tion. The agreement between piecewise and numerical solu-
tions is extremely good. Although the Donnan approximation
slightly underestimates the salt density in the pore, its pre-
dictions follow the correct trend.

V. CONCLUSION

In this study, we applied the variational method to inter-
acting pointlike ions in the presence of dielectric discontinui-
ties and charged boundaries. This approach interpolates be-
tween the WC limit ���1� and the SC one ���1�,

originally defined for charged boundaries without dielectric
discontinuity, and takes into account image-charge repulsion
and solvation effects. The variational Green’s function v0 has
a Debye-Hückel form with a variational parameter �v and the
average variational electrostatic potential 0�z� is either
computed numerically or a restricted form is chosen with
variational parameters. The physical content of our restricted
variational choices can be ascertained by inspecting the gen-
eral variational equations �Eqs. �11� and �12� for symmetric
salts�. The generalized Onsager-Samaras approximation that
we have adopted for the Green’s function replaces a local
spatially varying screening length by a constant variational
one; although near a single interface this screening length is
equal to the bulk one, in confined geometries the constant
variational screening length can account in an average way
for the modified ionic environment �as compared with the
external bulk with which the pore is in equilibrium� and can
therefore strongly deviate from the bulk value. This modified
ionic environment arises both from dielectric and reduced
solvation effects present even near neutral surfaces �encoded
in the Green’s function� and the surface charge effects en-
coded in the average electrostatic potential. Our restricted
variational choice for 0�z� is based on the usual nonlinear
Poisson-Boltzmann type solutions with a renormalized in-
verse screening length that may differ from the one used for
v0 and a renormalized external charge source. The coupling
between v0 and 0 arises because the inverse screening
length for v0 depends on 0 and vice versa. The optimal
choices are the ones that extremize the variational free en-
ergy.

In the first part of the work, we considered single inter-
face systems. For asymmetric electrolytes at a single neutral
interface, the potential 0�z� created by charge separation
was numerically computed. It was satisfactorily compared to
a restricted piecewise variational solution and both charge
densities and surface tension are calculated in a simpler way
than Bravina �5� and valid over a larger bulk concentration
range. The variational approach was then applied to a single
charged surface and it was shown that a piecewise solution,
characterized by two zones, can accurately reproduce the
correlations and nonlinear effects embodied in the more gen-
eral variational equation. The first zone of size h is governed
by a salt-free regime, while the second region corresponds to
an effective mean-field limit. The variational calculation pre-
dicts a relation between h and the surface charge of the form
h� �c+ln��s�� / ��s� where the parameter c depends on the
temperature and ion valency.

In the second part, we dealt with a symmetric electrolyte
confined between two dielectric interfaces and investigated
the important problem of ion rejection from neutral and
charged membranes. We illustrated the effects of ion valency
and dielectric discontinuity on the ion rejection mechanism
by focusing on ion partition and salt reflection coefficients.
We computed within a variational Donnan potential approxi-
mation, the inverse internal screening length and ion parti-
tion coefficients, and showed that for ��4 one reaches the
SC limit, where the partition coefficients are independent of
the bulk concentration and depend only on the size and
charge of the nanopore. This result has important experimen-
tal applications, since it indicates that complete filtration can
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FIG. 16. �Color online� Local ionic partition coefficient in the
nanopore �same parameters as in Fig. 15 and �=0� computed with
the piecewise solution. �a� �=1, �b� �=100. The dotted line in the
top plot corresponds to the mean-field prediction for counterion
density.
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be done at low bulk salt concentration and/or high surface
charge. Furthermore, we showed that, due to image interac-
tions, the quantity of salt allowed to penetrate inside a neu-
tral nanopore increases with the pore size. In the case of
strongly charged membranes, this behavior is reversed for
the whole physical range of pore size. We quantified the
interplay between the image-charge repulsion and the surface
charge attraction for counterions and found that even in the
presence of a weak surface charge, the competition between
them leads to a characteristic pore size dcr below which the
counterion partition coefficient rapidly decreases with in-
creasing pore size. On the other hand, for nanopores of size
larger than dcr the system behaves like a neutral pore. Our
variational calculation was compared to the Debye closure
approach and the midpoint approximation used by Yarosh-
chuk �6�. We have not yet been able to find analytical or
numerical solutions to the exact variational equations Eqs.
�11� and �12�. Our approach, based on restricted variational
choices, shows significant deviations from Yaroshchuk’s
midpoint approach at high ion concentrations and small pore
size. Finally, the introduction of a simple piecewise trial
form for 0, which perfectly matches the numerical solutions
of the variational equations, enabled us to go beyond the
variational Donnan potential approximation and thus account
for the concentration peaks in counterion densities. We com-
puted ion densities in the pore and showed that for ��4, the
exclusion of coions from the pore is nearly total. We also
compared the ionic density profiles obtained from the varia-
tional method with MC simulation results and showed that
the agreement is quite good, which illustrates the accuracy of
the variational approach in handling the correlation effects
absent at the mean-field level.

The main goal in this work was first to connect two dif-
ferent fields in the chemical physics of ionic solutions focus-
ing on complex interactions with surfaces: field-theoretic cal-
culations and nanofiltration studies. Moreover, on the one
hand, this variational method allows one to consider, in a
nonperturbative way, correlations and nonlinear effects; on
the other hand the choice of one constant variational Debye-
Hückel parameter is simple enough to reproduce previous
results and to illuminate the mechanisms at play. This ap-
proach is also able to handle, in a very near future, more
complicated geometries, such as cylindrical nanopores, or a
nonuniform surface charge distribution.

The present variational scheme also neglects ion-size ef-
fects and gives rise to an instability of the free energy at
extremely high salt concentration. Second-order corrections
to the variational method may be necessary in order to prop-
erly consider ionic correlations leading to pairing �41,42� and
to describe the physics of charged liquids at high valency,
high concentrations or low temperatures. Introducing ion
size will also allow us to introduce an effective dielectric
permittivity �p for water confined in a nanopore intermediate
between that of the membrane matrix and bulk water, leading
naturally to a Born-self-energy term that varies inversely
with ion size and depends on the difference between 1 /�w
and 1 /�p �43,44�. Furthermore, the incorporation of the ion
polarizability �45� will yield a more complete physical de-
scription of the behavior of large ions �46�. Charge inversion
phenomena for planar and curved interfaces are another im-

portant phenomenon that we would like to consider in the
future �47�. Note, however, that our study of asymmetric
salts near neutral surfaces reveals a closely related phenom-
enon: the generation of an effective nonzero surface charge
due to the unequal ionic response to a neutral dielectric in-
terface for asymmetric salts. A further point that possesses
experimental relevance is the role played by surface charge
inhomogeneity. Strong-coupling calculations show that an
inhomogeneous surface charge distribution characterized by
a vanishing average value gives rise to an attraction of ions
toward the pore walls, but this effect disappears at the mean-
field level �48�. For a better understanding of the limitations
of the proposed model, a more detailed comparison with
MC/MD simulations is in order �49,50�. Finally, dynamical
hindered transport effects �28,49� such as hydrodynamic
forces deserve to be properly included in the theory for prac-
tical applications.
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APPENDIX A: VARIATIONAL FREE ENERGY

For planar geometries �charged planes�, the translational
invariance parallel to the plane, allows us to significantly
simplify the problem by introducing the partial Fourier-
transformation of the trial Green’s function in the form

v0�z,z�,r� − r��� =	 dk

�2��2eik·�r�−r���v̂0�z,z�,k� . �A1�

By injecting the Fourier decomposition �A1� into Eq. �17�,
the DH equation becomes

�−
�

�z
��z�

�

�z
+ ��z��k2 + �v

2�z���v̂0�z,z�,k;�v�z��

=
e2

kBT
��z − z�� . �A2�

The translational symmetry of the system enables us to
express any thermodynamic quantity in terms of the partially
Fourier-transformed Green’s function v̂0�z ,z ,k�. The average
electrostatic potential contribution to Fv that follows from
the average H�0 reads

F1 = S	 dz�−
��0�z��2

8��B
+ �s�z�0�z�

− �
i


ie
−qi

2W�z�/2−qi0�z�� , �A3�

the kernel part is

F2 =
S

16�2	
0

1

d�	
0

�

dkk	 dz
�v

2�z�
�B

� �v̂0�z,z,k;�v�z���� − v̂0�z,z,k;�v�z��� �A4�

where the first term in the integral follows from F0 and the
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second term from H0�0. Finally, the unscreened van der
Waals contribution, which comes from the unscreened part
of F0, is given by

F3 =
S

8�
	

0

1

d�	 dz� 1

�B�z�
−

1

�B
����2��

− ln 	 De−
dr���2/�8��B�, �A5�

where �B�z�=e2 / �4���z�kBT�. The technical details of the
computation of F3 can be found in Ref. �51�. The last term of
Eq. �A5� simply corresponds to the free energy of a bulk
electrolyte with a dielectric constant �w. In the above rela-
tions, S stands for the lateral area of the system. The dummy
“charging” parameter � is usually introduced to compute the
Debye-Hückel free energy �52�. It multiplies the Debye
lengths of v̂0�z ,z ,k ;�v�z�� in Eq. �A4� and the dielectric per-
mittivities contained in the thermal average of the gradient in
Eq. �A5�. This latter is defined as

���2�� = − ��0�2

+	 dk

�2��2 �k2 + �z�z��v̂c�z,z�,k;���z���z=z�

�A6�

where we have introduced ��
−1�z���B

−1+���B
−1�z�−�B

−1� and
v̂c�z ,z� ,k ;���z�� stands for the Fourier transformed Coulomb
operator given by Eq. �5� with Bjerrum length ���z�. The
quantity F3 defined in Eq. �A5� does not depend on the in-
verse screening length �v. Moreover, in order to satisfy the
electroneutrality, 0�z� must be constant in the salt-free parts
of the system where �B�z���B. Hence, F3 does not depend
on the potential 0�z�.

APPENDIX B: VARIATIONAL CHOICE FOR THE
NEUTRAL DIELECTRIC INTERFACE

We report in this appendix the restricted variational piece-
wise 0�z� for a neutral dielectric interface which is a solu-
tion of

�20

�z2 = 0 for z� a , �B1�

�20

�z2 − �
20 = cze−�z for z� a , �B2�

where 0�z� in both regions is joined by the continuity con-
ditions

0
��a� = 0

��a�, � �0
�

�z
�

z=a

=� �0
�

�z
�

z=a

. �B3�

We also tried to introduce different variational screening
lengths in the second term of the lhs and in the rhs of Eq.
�B2� without any significant improvement at the variational
level. For this reason, we opted for a single inverse varia-
tional screening length, �. The solution of Eqs. �B1� and
�B2� is

0�z� = �� for z� a ,

��1 + ��z − a��e−��z−a� for z� a .
� �B4�

where the coefficient c disappears when we impose the
boundary and continuity conditions, Eq. �B3�. The remaining
variational parameters are the constant potential �, the dis-
tance a and the inverse screening length �. By substituting
Eq. �B4� into Eq. �A3�, we obtain the variational grand po-
tential

Fv = V
�b

3

24�
+

S

32�
���b

2 −
�
�B
�2� − S�−	

0

�

dz

� �e−q−
2w�z�/2+q−0�z� +

q−

q+
e−q+

2w�z�/2−q+0�z�� . �B5�

APPENDIX C: VARIATIONAL CHOICE FOR THE
CHARGED DIELECTRIC INTERFACE

The two types of piecewise variational functions used for
single charged surfaces are reported below.

�i� The first trial potential obeys the salt-free equation in
the first zone and the NLPB solution in the second zone,

�2̃0
NL

� z̃2 = 2��z̃� for z̃� h̃ , �C1�

�2̃0
NL

� z̃2 − �̃
2 sinh 0 = 0 for z̃� h̃ ,

whose solution is

̃0
NL�z̃� =�4 arctanh � + 2�z̃ − h̃� for z̃� h̃ ,

4 arctanh��e−�̃�z̃−h̃�� for z̃� h̃ ,
� �C2�

where �= �̃−�1+ �̃
2 . Variational parameters are h and �,

and the electrostatic contribution of the variational grand po-
tential Eq. �A3� is

F1

S̃
=

h̃ + � − 4 arctanh �

2��
−
�̃b

2

4��
	 dz̃e−�w̃�z̃�/2 cosh ̃0

NL.

�C3�

�ii� The second type of trial potential obeys the salt-free
equation with a charge renormalization in the first zone and
the linearized Poisson-Boltzmann solution in the second
zone,

�2̃0
L

� z̃2 = 2���z̃� for z̃� h̃ ,

�2̃0
L

� z̃2 − �̃
2 ̃0

L = 0 for z̃� h̃ , �C4�

whose solution is given by
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̃0
L�z̃� = �−

2�

�̃
+ 2��z̃ − h̃� for z̃� h̃ ,

−
2�

�̃
e−�̃�z̃−h̃�

for z̃� h̃ .� �C5�

Variational parameters introduced in this case are h̃, �̃, and
the charge renormalization �, which takes into account non-
linearities at the mean-field level �20�. The variational grand
potential reads

F1

S̃
=

2��1 + h̃�̃� − �2�1/2 + h̃�̃�
2���̃

−
�̃

2

4��
	 dz̃e−�w̄�z̃�/2 cosh ̃0

L�z̃� . �C6�

In both cases, the boundary condition satisfied by 0 is
the Gauss law

� �̃0

� z̃
�

z=0

= 2� , �C7�

where �=1 for the nonlinear case. It is important to stress
that in the case of a charged interface, Eq. �C7� holds even if
��0. In fact, since the left half-space is ion-free, ̃0�z� must
be constant for z�0 in order to satisfy the global electroneu-
trality in the system.

APPENDIX D: DEFINITION OF THE SPECIAL
FUNCTIONS

The definition of the four special functions used in this
work are reported below.

Lin�x� = �
k�1

xk

kn , ��n� = Lin�1� , �D1�

��x;y,z� = 	
0

x

dtty−1�1 − t�z−1, �D2�

2F1�a,b;c;x� = �
k�0

�a�k�b�k�c�k
xk

k!
, �D3�

where �a�k=a ! / �a−k�!.

APPENDIX E: DISJOINING PRESSURE
FOR THE NEUTRAL PORE

The net pressure between plates is defined as

P = −
1

S

�Fv

�d
− �2�b −

�b
3

24�
� , �E1�

where the subtracted term on the rhs is the pressure of the
bulk electrolyte. The total van der Waals free energy, which
is simply the zeroth order contribution F0 to the variational
grand potential Eq. �9�, is with the constraint �v=�b �there is
no renormalization of the inverse screening length at this
order�,

FvdW =
d�b

3

24�
−
�b

8�d
Li2�e−2d�b� −

1

16�d2Li3�e−2d�b�

�E2�

and

PvdW = −
1

S

�FvdW

�d
+
�b

3

24�
. �E3�

We illustrate in Fig. 17 the difference between the van der
Waals pressure and the prediction of the variational calcula-
tion for �b�B=0.5, 1, and 1.5. We notice that the prediction
of our variational calculation yields a very similar behavior
to that illustrated in Fig. 8 of Ref. �22�. The origin of the
extra-attraction that follows from the variational calculation
was discussed in detail in the same article. This effect origi-
nates from the important ionic exclusion between the plates
at small interplate separation, an effect that can be captured
within the variational approach.
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